Cevapla
 
Konu Araçları
Eski 19-02-16, 10:39 #1
MasterMakarov MasterMakarov çevrimdışı
Varsayılan Matematik Tarihi Bölüm 6 - Modern Matematik Dönemi



Kümeler teorisinin, dolaysıyla, modern matematiğin, babası Georg Cantor (1845-1918) dır. G. Cantor Berlin üniversitesinde, Kummer’in ögrencisi olarak sayılar teorisinde tezini bitirdikten sonra, 1869 dan itibaren meslek hayatının sonuna kadar çalışacağı Halle üniversitesinde işe başlamıştır. Halle üniversitesinde çalışmaya başladığı yıllarda, o üniversitenin hocalarından, E. Heine’nın Cantor’a sorduğu bir soru Cantor’un yaşamını, matematiğin de seyrini değiştirecekti. Bu soru şu idi: Bir periodluk bir aralıkta, toplamı sıfır olan bir trigonometrik serinin katsayılarının hepsi sıfır mıdır?

Cantor bu soruyla uğraşırken gerçel sayıların o güne kadar fark edilmeyen bir özelliğinin farkına varır. Bu da rasyonel sayılarla irrasyonel sayıların aynı çoklukta olmadığıdır. Başka bir ifadeyle, rasyonel sayıların kümesiyle irrasyonel sayıların kümesi arasında, her iki kümenin de sonsuz olmasına karşın, bire-bir bir dönüşüm yoktur. O halde bu iki kümenin sonsuzlukları aynı değildir. Böylelikle ortaya küme kavramı ve kümelerin, içerdikleri eleman çokluğu açısından, sınıflandırılması sorunu çıktı. Bu son kavram “sonsuzun” tek değil, çok olduğunu söylemektedir; bu da çok tepki çekecekti.

Tarih boyunca, Elea’ lı Zeno’dan başlayarak, günümüze kadar, “sonsuz” insanları rahatsız etmiştir. Aristo’dan Cantor’a kadar geçen zaman diliminde “sonsuz” anlayışı, temelde Aristo’nun görüşü olan, şu anlayıştır: Sonsuz, ufuk çizgisi gibi, var olmayan ama konuşma kolaylığı sağladığı için kullandığımız bir kavramdır. Bu kavramı “sınırsızlık” kavramı yerine kullanırız; bir şey, çoğalarak ya da büyüyerek, önceden belirleyeceğimiz bir çokluğun ya da büyüklüğün ötesine geçme potansiyeline sahipse, o şeye sonsuza gidiyor deriz. Başka bir deyimle, Aristo’nun sonsuz anlayışı “potansiyel sonsuz” anlayışıdır.

Cantor’a göre ise “sonsuz” tek başına manalı bir söz değildir; manalı olan “sonsuz küme” kavramıdır; sonsuz kümeler ise var olan nesnelerdir. Burada “sonsuz küme” deyimi, büyükanne gibi, bölünmez bir terim olarak anlaşılmalıdır. Başka bir deyimle, Cantor’un sonsuz anlayışı “ actual sonsuz” anlayışıdır. O halde önce kümeler sonlu-sonsuz diye ikiye ayrılacak; sonra da sonsuz kümeler, kendi aralarında, sonsuzluklarına göre, çeşitli sınıflara ayrılacaktır. Böylelikle ortaya sayısız “sonsuz küme” sınıfları çıkacaktır. Bu da çok çeşitli “sonsuzluğun “ olduğu manasına gelmektedir.

Cantor’un bu sonsuz anlayışı, Kronecker ve Poincaré gibi bir çok ünlü matematikçi tarafından tepki ile karşılandı. Bunun sonucu olarak ta, matematikçiler, “sonsuzu” Cantor gibi anlayanlar ve Aristo gibi anlayanlar olmak üzere, iki guruba ayrıldılar.

Küme kavramının, aksiyomatik olarak tanımlanmaksızın, Cantor’un yaptığı gibi, sözlük manasında kullanılması, kümeler teorisini de çıkmaza soktu; “bütün kümelerin kümesi bir küme midir” gibi yeni paradoksları ortaya çıkardı. Bu da matematikçileri, kümeler teorisinden vazgeçilip-vazgeçilmemesi konusunda, ikinci bir kez böldü.

Üçüncü bir sorun da, bir matematiksel ispatın ne olduğu, geçerliliği, meşruluğu sorunuydu. Matematikte deney ya da gözlem olmadığı için, tartışma konusu olan bir ispat, teori veya teorem hakkında son sözü deneye, ya da gözleme bırakma olanağı yoktur. Bu, önünde-sonunda, “gerçek, hakikat, doğru” gibi felsefi, hatta metafiziksel bir sorundur.

Bir matematikçi “öyle bir x vardır ki...” dediği zaman var olduğunu iddia ettiği şeyi somut olarak ortaya koymak, en azından nasıl inşa edilebileceğini göstermek zorunda mıdır; yoksa, bir din adamının dini ilkelere dayanarak şeytanın varlığını ispatladığı gibi, bir matematikçinin de, aradığı şeyin nasıl elde edileceğini göstermeksizin, o şeyin var olduğunu, bir takım ilkelere dayanarak, ispatlaması yeterli midir?

Bu üç sorunla ilgili farklı görüş ve anlayışlar matematikçileri derin tartışmalara, çeşitli ekollere (sezgiciler, mantıkçılar ve formalistler olarak) bölünmelere, ve sonuçta da matematiği derin bir krize itti. Bu “ Matematiğin Temelleri Krizi” denen krizdir. Matematiğin artık eskisi gibi kendi gelenek-göreneklerine göre yapılamayacağını anlayan matematikçiler, bu krizden çıkmak için matematiğin bir “anayasal” temele oturtulması gerektiğini anlayarak, küme kavramını aksiyomatik olarak tanımlayıp, matematiği aksiyomatik kümeler temeli üzerine inşa etmeye çalıştılar; gerektiğinde kümeler teorisinin aksiyomlarına “seçim aksiyomu” gibi aksiyomlar da ilave edilecek ve böylece bugünkü modern matematik oluşmaya başlıyacaktır. Böylece “Modern Matematik” doğdu. Kısa bir tanım vermek gerekirse, “modern matematik” klasik matematiğin anayasal bir tabana oturtulmuş şeklidir, diye tanımlayabiliriz. Artık bu yasal çerçevede neyin meşru, neyin meşru olmadığı sağlıklı bir şekilde tartışılabilecektir.
Bundan sonra matematiğin, aritmetik, geometri, ... gibi çeşitli kısımlarının aksiyomatik bir temele oturtulma girişimleri başladı. D. Hilbert’in (1862-1943) rüyası, matematiğin bütününü, hiç olmazsa, aritmetik, geometri gibi her ana dalını öyle aksiyomatik bir temele oturtmaktı ki, o dalın her önermesi, o dala özgü aksiyomlardan hareketle, olumlu ya da olumsuz bir yönde, karara bağlanabilsin idi. 20 ci asır matematiğinin en önemli teoremi; derinlik ve önem açısından, Einstein’nın görecelik ve Heisenberg’in belirsizlik ilkeleriyle aynı düzeyde olduğu kabul edilen, K. Gödel (1906-1978) in “eksiklik” (Gödel’s Incompleteness Theorem; burada yorumlandığı manada, “kararsızlık” teoremi demek daha doğru olur kanısındayım) teoremi Hilbert’in bu rüyasının bir rüya olarak kalmaya mahkum olduğunu gösterdi.

Bu teoremi somut bir örnek üzerinde izah edemeye çalışacağım. Matematiğin bütününü dünya ülkeleri; aritmetik gibi bir ana dalını da Türkiye gibi bir ülke olarak düşünelim. Gayemiz Türkiye’ ye bir anayasa yapmaktır. Bu anayasanın şu dört temel ilkeye uygun olmasını beklemekteyiz. Bunlar

a) Tutarlılık İlkesi: Anayasanın bir maddesi geri kalanlarıyla çelişmemeli.

b) Bağımsızlık İlkesi: Anayasanın her maddesi geri kalan maddelerden bağımsız olmalı; onların sonucu olarak elde edilememeli.

c) Tamlık İlkesi: Anayasa, meclisten geçen her yasanın, anayasanın hükmü altına girecek kadar kapsamlı, tam olmalı; dolaysıyla anayasa mahkemesine götürülen her hangi bir yasa hakkında anayasa mahkemesi “görevsizlik kararı” verememeli.

d) Anlaşılabilirlik İlkesi: Meclisin çıkaracağı yasa sayısında bir sınırlama olamaz şüphesiz; meclis her türlü önermeyi yasa olarak çıkarabilir. Dolaysıyla yukarıdaki tamlık ve bağımsızlık ilkelerine uyması gereken anayasada sonsuz sayıda madde de olabilir. Madde sayısı sonlu da olsa sonsuz da olsa, hangi maddenin anayasaya dahil olduğunu, hangisinin dahil olmadığını anlayabilmemiz gerekir; yoksa anayasa işlevsiz olur. Başka bir deyişle, anayasa çok çok karmaşık olmamalı, hangi maddenin anayasaya dahil olduğunu, hangisinin dahil olmadığını sonlu zamanda (gerekirse bir bilgisayar kullanarak) anlıyabilmeliyiz.

Bu ilkeler biz ölümlülerce makul ve her anayasanın sağlaması gereken ilkeler olarak görülebilir. Gödel hiç de böyle düşünmüyor; Gödel’e göre, bu ilkeleri sağlayan bir anayasa yapmak mümkün değildir. Yapacağımız anayasalar b) ve c) ilkelerini sağlasalar bile, ya tutarsız; ya da tam olmayacaklardır. Başka bir ifadeyle, a), b) ve d) ilkelerine uyan hangi anayasayı kabul edersek edelim, meclise öyle bir yasa önerisi verebilirim ki, bu öneri yasalaştığı ve muhalefet de onu anayasa mahkemesine götürdüğü zaman, anayasa mahkemesi bu yasanın anayasaya uygun olduğunu da söyleyemez, uygun olmadığını da söyleyemez. Bu da yaptığımız anayasanın tam olmadığını manasına gelmektedir.

Burada anayasa mahkemesinin “ülke çıkarı” ya da başka siyasi mülahazaları göz önüne almadan, önüne getirilen yasa maddesini salt mantık açısından yargıladığını kabul ediyoruz.

Matematiğe dönecek olursak, Gödel’in teoremi, matematiğin aritmetik gibi bir ana dalını nasıl bir aksiyom sistemi üzerine oturtursak oturtalım, aksiyom sistemimizin tutarlı, bağımsız ve anlaşılabilir olması koşuluyla, tamlık ilkesini sağlayacak şekilde o bölümü aksiyomatikleştirmemiz mümkün değildir, diyor. Başka bir ifade ile, aksiyomlarımızın dışına çıkmadan, aksiyomlarımız tutarlı iseler, doğruluğunu da, yanlışlığını da ispatlanamayacak bir önerme üretmek her zaman mümkündür.

Buradaki temel sorun “doğru” ile “ispatlanabilir” kavramlarının eşdeğer kavramlar olmamasıdır. Klasik mantığın temel ilkelerinden biri şöyle der: Bir önerme ya doğrudur ya da yanlış; aynı zamanda doğru ve yanlış, ya da başka bir şey olamaz. Aynı ilke “ispatlanabilirlik” için geçerli değildir. Gödel’den önce, verilen her önermenin, bu gün beceremesek bile, önünde-sonunda doğruluğunun ya da yanlışlığının ispatlanacağı yönünde derin bir inanç vardı. Gödel’in teoremi bu inancı yıktı.

Gödel’in bu teoremi çeşitli şekillerde yorumlandı. Matematiğin sınırlarını aşıp felsefeye dayanan bu yorumların her biri tartışmaya açıktır; ancak Gödel’in teoreminin matematiğin her şeyi anlamamıza olanak vermediğini, dolaysıyla her gerçeği kavramayacağımızı (ya da, mantık yoluyla mutlak hakikate erişemiyeceğimizi) gösterdiği sanırım tartışılmazdır.

20 inci asırda da, 19 uncu asırda olduğu gibi, çok sayıda yeni teoriler ortaya çıktı. Bunlardan bir kaçı: Metrik uzaylar (1902), topoljik uzaylar (1914), fonksiyonel analiz (1924), Banach cebirleri (1940), distribüsyon teorisi (1950), operatörler teorisi (1930), Felaket (Catastrophe) teorisi (1950)....Bunların detayına girmem mümkün değil.

Bu asrın matematiğinin temel özellikleri: Hiçbir asırda olmadığı kadar soyut olması; kavramsal ve yapısal olmasıdır. Matematikte çalışan insan sayısı ve yapılan üretim hiçbir asırda 20. asırdaki kadar yüksek olmamıştır. Üretimin çokluğu, çeşitliliği, kullanılan dilin konuya özel oluşu, matematiğin bütünü hakkında bir bilgi sahip olmayı imkansız kılmaktadır. Başlarken söylediğim bir sözle, bugünkü matematik hakkında bilgimiz, körün dokunduğu fil hakkındaki bilgisinden daha fazla değildir.


*Alıntıdır.*
Prof. Dr. Ali Ülger
Koç Üniversitesi.

__________________

Mesajı son düzenleyen MasterMakarov ( 19-02-16 - 11:21 )
  Alıntı Yaparak CevaplaAlıntı Yaparak Cevapla
Cevapla

Bu konunun kısa yolunu aşağıdaki sitelere ekleyebilirsiniz

Taglar
anayasa, bir, gibi, matematiğin, olarak

Konu Araçları

Gönderme Kuralları
Yeni konu açamazsınız
Cevap yazamazsınız
Dosya gönderemezsiniz
Mesajlarınızı düzenleyemezsiniz

BB code is Açık
Smiley Açık
[IMG] kodu Açık
HTML kodu Kapalı



Tüm saatler GMT +3. Şuan saat: 00:08
(Türkiye için artık GMT +3 seçilmelidir.)

 
5651 sayılı yasaya göre forumumuzdaki mesajlardan doğabilecek her türlü sorumluluk yazan kullanıcılara aittir. Şikayet Mailimiz. İçerik, Yer Sağlayıcı Bilgilerimiz. Reklam Mailimiz. Gizlilik Politikası. Tatil
Copyright © 2016