Son Dakika Haberlerini Takip Edebileceğiniz FrmTR Haber Yayında. * FrmTR Sohbet Kontrol Panelinizde.
Forum TR
Go Back   Forum TR > > >
FrmTR'ye Reklam Vermek İçin: [email protected]
Cevapla
 
Konu Araçları
Eski 20-07-09, 18:24   #1
ℓoωeŦяєє™

Exclamation Fibonacci sayıları....


Fibonacci sayıları ve Altın oran Fibonacci Sayıları Fibonacci Serisi


Adı orta çağın en büyük matematikçileri arasında geçen Fibonacci’nin hayatı ile ilgili pek fazla bilgi bulunmamaktadır. İtalya’nın Pisa şehrinde 1170’li yıllarda doğduğu sanılmakta, babasının işi nedeniyle Kuzey Afrika’ya ve Cezayir’e gitttiği ve burada Arap hocalardan matematik dersleri aldığı bilinmektedir. Hint-Arap sayılarını (1, 2, 3...) öğrenerek, bunları Avrupa’ya tanıtmıştır. Bu bakımdan Fibonacci, matematiği Araplardan alıp Avrupa’ya tanıtan kişi olarak anılır. (3)

“Fibonacci sayıları” ve özellikle “Altın Oran”, matematikçilerin oldukça ilgisini çekmiş ve birçok araştırmaya konu olmuş bulgulardır. Bunun sebepleri; Fibonacci dizisindeki sayıların oranı olan 1,61803... sayısının -ki buna “Altın Oran” denilmektedir- tarihte oyun kartlarından piramitlerin yapımına kadar birçok alanda kullanılmış olması, sayı teorilerinde ortaya çıkması ve doğada birçok varlıkta gözlemlenmesidir. (2)

İlk olarak 1202’de yazdığı Liber Abaci “The Book of Calculation” kitabının yeni versiyonunu 1228’de tamamlayan Fibonacci’nin, Practica Geometria “The Practice of Geometry” (1220) , Flos “The flower” (1225) ve Liber Quadratorum “The Book of Square Numbers” (1225) kitapları ise matematik alanında ele almış olduğu diğer eserlerdir. Bu kitapların içinde en ünlü olanı, Fibonacci sayılarıyla Altın Oran’ın anlatıldığı “Liber Abaci”dir. Kitapta karşılaşılan bir problemin çözümünde Fibonacci dizisi anlatılmaktadır. Bu problem aşağıdaki gibidir: (4), (5)

Tavşan Problemi

“Dört yanı duvarlarla çevrili bir yere bir çift tavşan konmuştur. Her çift tavşanın bir ay içinde yeni bir çift tavşan yavruladığı, her yeni çiftin de erginleşmesi için bir ay gerektiği ve tavşanların ölmediği varsayılırsa, 100 ay sonunda dört duvarın arasında kaç çift tavşan olur?” Bu şekilde düşünüldüğü takdirde tavşan çiftleri aylara göre şu sıralamayı ortaya koymaktadır: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... Görüldüğü gibi ilk iki sayı hariç, her sayı kendisinden önce gelen iki sayının toplamına eşittir. Tavşanlar, görülen grafik (bkz, resim 1) doğrultusunda artış göstermektedir. Bu sayıların arasındaki oran ise bize altın oranı vermektedir.

Fibonacci Dizisinin Görüldüğü ve Kullanıldığı Yerler

Fibonacci sayılarına özellikle doğada çok sık rastlamaktayız. Bu sayılar bitki yaprakları, bitki tohumları, çiçek yaprakları ve kozalaklarda sıkça karşımıza çıkmaktadır. Daha da ilginci bu sayılara Pascal veya Binom üçgeninde, Mimar Sinan’ın eserlerinde, Da Vinci’nin resimlerinde de rastlanmaktadır.

Da Vinci’nin yandaki (bkz: resim 2) yapıtında, Mona Lisa’nın başı etrafına bir dörtgen çizildiğinde, sağlanan dörtgen altın orana uymakta olup resmin boyutları da altın oranı vermektedir. (1) Fibonacci dizisindeki bir terim, ondan önce gelen bir terime bölündüğünde, bölümün sonsuza eşit olması için irrasyonal bir sayı olan altın oran sayısına yaklaştığı görülmektedir. (2)

Bitkiler alemine genel bir bakışla yaklaşıldığında ise, bitki sapları üzerindeki yaprakların dizilişinin Fibonacci dizisine uygun olduğu görülür. Bu yargı; kavak, elma, muz, armut, karaağaç gibi birçok bitki için geçerlidir.

Şekilde görüldüğü gibi (bkz: resim 3) sap üzerindeki yapraklar Fibonacci sayılarına uygun olarak, birbirlerini kapatmayacak şekilde sıralanır. Sap üzerindeki ilk yaprağı “1” numara olarak alırsak; “1” numara ile aynı yönde olan bir sonraki yaprağa ulaşmak için saat yönünde 3 defa dönmemiz gerekir. Bunun sonuncunda toplam 5 yaprak sayarız. Bu dönüşü saat yönünün tersinde yaparsak, 2 tur atmamız gerekecek ve bu da bize “2, 3, 5” ardışık Fibonacci dizisini verecektir.

Tütün bitkisi yapraklarının dizilişindeki Fibonacci dizisi ise, bitkinin güneşten ve havadaki karbondioksitten optimum düzeyde faydalanmasını sağlayarak, yüksek düzeyde fotosentez yapmasına olanak verir. Bu özellik eğrelti otunda da gözlemlenmektedir. Ayçiçeğinin üstündeki spiral şeklinde dizilmiş tohumları saat yönünde ve tersi yönde saydığımızda ardışık iki Fibonacci sayısına ulaşırız. Papatya çiçeğinde de aynı Fibonacci dizisi gözlenmektedir. Benzer bir durum çam kozalağı üzerindeki tanelerde de mevcuttur. Bu taneler kozalağın alt kısmındaki sabit bir noktadan başlayarak, tepe noktasındaki başka bir sabit noktaya doğru eğriler çizerek gelişirler ve bu gelişim sonunda taneleri soldan sağa ve sağdan sola doğru sayarsak başka bir Fibonacci dizisi elde ederiz. (6)

İnsan vücudunda da fibonacci dizisinin işaretlerini görebiliriz. Baştan göbek deliğine kadar olan uzunluğun boyumuza oranı, parmak uçlarından parmakların boğumuna kadar olan uzunluğun bütün parmak boyuna oranı bize fi sayısını verir

Fibonacci dizisinin görüldüğü objeler yalnızca doğanın döngüsü içinde değil, insan yapılarında da mevcuttur. Kubbe ve kule tasarımları içeren ve genellikle eski çağlara ait mimari eserlerde de Fibonacci dizisi gözlemlenir. Mimar Sinan’ın yapmış olduğu Selimiye ve Süleymaniye camilerinin, kubbe ve minarelerinde altın oran gözlenmektedir. Matematikte ise başta geometri alanında kullanılan Pascal üçgenini göz önünde bulundurursak, üçgeni oluşturduktan sonra, katsayıların sıralı çapraz toplamları Fibonacci dizisini vermektedir. (1)

matematiğin en ilgi çekici konuları arasındadır.
Bir yarışmada aşağıdaki problem ortaya çıktı :

Her ay bir çift tavşan üreten tek bir tavşan çifti ile başlanırsa, üretilen her tavşan çifti de bir ay sonra aynı şekilde üretkenleşirse ve tavşanlar hiç ölmezse, n ay sonra toplam kaç tavşan çifti olur ?

Fibonacci sayıların yardımıyla yapılmış fayanslarİlk ay yeni doğmuş bir çift tavşanımız olsun, tabi matematik bu yavruların anasız, babasız nasıl büyütülecekleri veya bu iki tavşanın da aynı cinsten olup olmaması konusuna pek girmez. İkinci ayda, bu tavşanlar daha yavrulamadıklarından, hala bir çift tavşanımız olacak. Üçüncü ayda bu tavşanlarımız yavrulayacağından iki çift tavşanımız olacak. Bu yeni doğmuş olan çift dördüncü ay doğurmayacak , oysa ana babaları yeniden bir çift yavru yapacak ve toplam üç çift tavşanımız olacak. Bu mantıkla düşünmeye devam edersek aşağıdaki sayı dizisini elde ederiz. Dizideki sayılar Ocak (ilk yavru çiftinin ortaya çıktığı ay) ile Aralık arasındaki takvim aylarının her birinde bizim kahraman tavşan çiftlerimizin sayısını vermektedir:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...
Dizi elemanlarının matematiksel gösterimi n tam sayı olmak üzere aşağıdaki gibi verilir:
  Alıntı Yaparak Cevapla
Eski 20-07-09, 20:36   #2
flypow3r

Varsayılan C: Fibonacci sayıları....


Şekilde görüldüğü gibi (bkz: resim 3)
Hani Nerde Göremiyorum
  Alıntı Yaparak Cevapla
Cevapla

Bu konunun kısa yolunu aşağıdaki sitelere ekleyebilirsiniz

Konu Araçları

Gönderme Kuralları
Yeni konu açamazsınız
Cevap yazamazsınız
Dosya gönderemezsiniz
Mesajlarınızı düzenleyemezsiniz

BB code is Açık
Smiley Açık
[IMG] kodu Açık
HTML kodu Kapalı



5651 sayılı yasaya göre forumumuzdaki mesajlardan doğabilecek her türlü sorumluluk yazan kullanıcılara aittir. Şikayet Mailimiz. İçerik, Yer Sağlayıcı Bilgilerimiz. Reklam Mailimiz. Gizlilik Politikası


Reklamı Kapat

Reklamı Kapat