Reklamsız Forum İçin Tıklayınız. * FrmTR Sohbet Kontrol Panelinizde. * FrmTR'nin resim sitesi Resimci.Org yayında
Forum TR
Go Back   Forum TR > > >
FrmTR'ye Reklam Vermek İçin: [email protected]
Cevapla
 
Konu Araçları
Eski 10-11-07, 22:17   #1
Carambols

Thumbs up gauss hayatı..


Johann Carl Friedrich Gauss ya da Gauß (30 Nisan 1777 – 23 Şubat 1855), Alman kökenli dahi matematikçi ve bilim adamı. Katkıda bulunduğu alanlardan bazıları, sayılar kuramı, analiz, diferansiyel geometri, jeodezi, manyetizma, astronomi ve optiktir. "Matematikçilerin prensi" ve "antik çağlardan beri yaşamış en büyük matematikçi" olarak da bilinen[1] Gauss, matematiğin ve bilimin pek çok alanına etkisini bırakmıştır ve tarihin en nüfuzlu matematikçilerinden biri olarak kabul edilir.

Gauss'un çocukluk yıllarından beri dahi olduğunu gösteren pek çok hikaye vardır, nitekim pek çok matematiksel keşfini henüz 20 yaşına gelmeden yapmıştır. Sayılar kuramının önemli sonuçlarını derleyip kendi katkılarını da ekleyerek yazdığı büyük eseri Disquisitiones Arithmeticae'yi 21 yaşında (1798) bitirmişse de, eser ilk olarak 1801'de basılmıştır.


Çocukluğu ve gençliği

Gauss, Kutsal Roma Cermen İmparatorluğu'na bağlı olan Braunschweig-Lüneburg Dükalığı'ndaki Braunschweig kentinde, Gebhard Dietrich ve Dorothea Gauss çiftinin tek çocuğu olarak dünyaya geldi. Babası az eğitimli bir taş ve duvar ustasıydı, annesinin ise okuma-yazması bile yoktu. Efsaneye göre, Gauss henüz üç yaşındayken, babasının kâğıt üzerinde yaptığı hesapları kafasından kontrol edip düzelterek dehasını belli etti.[2]

Bir başka meşhur hikayeye göre, Gauss'un ilkokul öğretmeni J.G. Büttner, öğrencilerini oyalamak için 1'den 100'e kadar olan sayıları toplamalarını isteyince, Gauss cevabı birkaç saniye içinde bularak hem öğretmenini, hem de asistanı Martin Bertels'i hayrete düşürdü. Küçük Gauss, sayı listesinin iki zıt ucundan birer sayı alıp topladığında hep aynı sonucun çıktığını farketmişti: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101, vesaire. Böylece 1'den 100'e kadar olan sayıların toplamı 50 × 101 = 5050 oluyordu.[3]

Gauss, Braunschweig Dükü Karl Wilhelm Ferdinand'in verdiği burs sayesinde 1792-1795 arasında Collegium Carolinum'da (bugünkü adıyla Braunschweig Teknik Üniversitesi), 1795-1798 arasında da Göttingen Üniversitesi'nde öğrenim gördü. 1796'da kenar sayısı bir Fermat asalı olan her düzgün çokgenin, sadece cetvel ve pergel kullanılarak çizilebileceğini kanıtladı. Bu tür cetvel ve pergel problemleri Antik Yunan'dan beri matematikçileri meşgul etmekteydi, dolayısıyla da Gauss'un keşfinin önemi büyüktü. Gauss bu başarısından o kadar memnun oldu ki, mezar taşına bir düzgün onyedigenin oyulmasını vasiyet etti. Ne var ki, daireye çok yakın olan bu şeklin oyulması çok zor olacağından, vasiyetini yerine getirecek bir taş ustası bulamadı.

1796 Gauss için oldukça verimli bir yıl oldu. Düzgün çokgenlerle ilgili keşfinden bir ay kadar sonra, yine kendi keşfi olan modüler aritmetik fikrini kullanarak, sayılar kuramında "karesel karşılıklılık ilkesi" (Alm. quadratisches Reziprozitätsgesetz) olarak bilinen çok önemli teoremi kanıtladı. İlk olarak Euler ve Legendre tarafından ortaya atılmış ama kanıtlanamamış olan bu teorem, ikinci dereceden denklemlerin çözülebilirliğinin belirlenmesini sağlıyordu. Yine aynı yıl içinde Gauss, asal sayıların tamsayılar arasındaki dağılımına ilişkin önemli bir sonuç buldu. Bundan kısa bir süre sonra da, her tamsayının en fazla üç üçgensel sayının toplamı olarak yazılabileceğini kanıtladı, ve 10 Temmuz 1796'da günlüğüne şu notu düştü: "Eureka! Num = Δ + Δ + Δ." Ekim 1796'da ise katsayıları sonlu bir cisimden gelen polinomların çözümleriyle ilgili bir sonuç yayımladı. (Bu sonuç, 150 yıl sonraki Weil varsayımlarının da çıkış noktası olmuştur.)

Orta yaşları
Gauss, 1799'da bitirdiği doktora tezinde cebirin temel teoreminin bir kanıtını sundu. Bu çok önemli teorem, karmaşık sayılar üzerine tanımlanmış her polinomun en az bir kökü olduğunu söyler. Gauss'tan önce pek çok matematikçi bu teoremi kanıtlamayı denemiş, ama hiçbir kanıt genel kabul görmemişti. Gauss'un kanıtına da, o zamanlar henüz kanıtlanmamış olan Jordan eğri teoremini kullandığı için itiraz edildi. Bu itirazlar üzerine Gauss, hayatı boyunca üç değişik kanıt daha sunacak, 1849'daki son kanıtı tüm matematikçilerden kabul görecekti. Gauss bu kanıtlar üzerinde çalışırken, karmaşık sayılar kavramının olgunlaşmasına çok büyük katkıda bulundu.

1801'de yayımladığı Disquisitiones Arithmeticae, sayılar kuramına modüler aritmetik gibi bir çok yenilik getirdi. Aynı yıl içinde, İtalyan astronom Giuseppe Piazzi, Ceres asteroidini keşfetti, ama asteroidi ancak 40 gün kadar takip edebildikten sonra kaybetti. 24 yaşındaki Gauss, üç aylık bir çalışmadan sonra, Ceres'in tekrar görülebileceği pozisyonu hesapladı, ve 31 Aralık'ta iki ayrı astronom (Franz Xaver von Zach ve Heinrich Olbers), Ceres'i tam Gauss'un söylediği pozisyonda gözlemlediler. Zach, "Doktor Gauss'un zeki çalışması ve hesapları olmasaydı, Ceres'i tekrar bulamayabilirdik" diyerek Gauss'un katkısına teşekkür etti. O zamana kadar hala Dük'ün verdiği bursla geçinen ve bu durumdan memnun olmayan Gauss, astronomide kariyer yapmayı düşündü, ve 1807'de Göttingen Üniversitesi'nde astronomi profesörü ve gözlemevi müdürü olarak çalışmaya başladı. Hayatının sonuna kadar aynı üniversitede çalışacaktı.

Ceres'in keşfi sayesinde gezegen ve asteroidlerin Güneş çevresindeki hareketleriyle ilgilenmeye başlayan Gauss, 1809'da Theoria motus corporum coelestium in sectionibus conicis solem ambientum (Güneş çevresinde konik kesitler üzerinde hareket eden gök cisimlerinin hareketlerinin teorisi) adlı eserini yayımladı. Bu eser, günümüz bilimlerinde yaygın olarak kullanılan en küçük kareler yöntemini de ayrıntılı olarak ele alıyordu. (Aynı yöntem, 1805'te Fransız matematikçi Adrien-Marie Legendre ve 1808'de Amerikalı matematikçi Robert Adrain tarafından da tanımlanmış ve kullanılmıştı, fakat Gauss bu yöntemi 1795'den beri bildiğini iddia etti.[4])

Gauss en karmaşık hesapları aklından yapabilmesiyle de ünlenmişti. Anlatılana göre, Ceres'in izleyeceği yörüngeyi nasıl bu kadar hatasız hesaplayabildiği sorulunca, "logaritma kullandım" cevabını vermiş, logaritma cetvelini nasıl bu kadar hızlı kullanabildiği sorulunca da "cetvele ne gerek var, hepsini kafamda hesaplıyorum!" demiştir.

1818'de Hannover eyaleti için yüzey ölçümleri yapan Gauss, bu ölçümler için helyotropu (güneş ışığı ve aynalar yardımıyla mesafe ölçmeye yarayan bir aygıt) icat edip kullandı.

Gauss, Öklit dışı geometrilerin varlığını keşfettiğini, ama tepkilerden çekindiği için fikirlerini yayımlamadığını iddia etmiştir. Öklit dışı geometriler, Öklit aksiyomlarının bir kısmını atarak oluşturulan, sezgilerimizle çelişen fakat kendi içinde tutarlı geometrilerdir ve Einstein'ın genel görelilik kuramı gibi pek çok yeni fikrin doğumunu mümkün kılmışlardır. Gauss'un yakın arkadaşı Farkas Bolyai'nin oğlu János Bolyai, 1832'de Öklit dışı geometrilerle ilgili eserini yayımladığında, Gauss Farkas Bolyai'ye bir mektup yazdı ve "eseri övmek kendimi övmek gibi olur, çünkü eserin içeriği son 30-35 yıldır benim kafamda dolaşan fikirlerle neredeyse birebir örtüşüyor" dedi. Bu kanıtsız iddia, János Bolyai ve Gauss'un arasının açılmasına sebep oldu. (Gauss'un notları ve mektuplarından anlaşıldığı kadarıyla, Öklit dışı geometrilerle ilgili temel fikirleri János Bolyai'den önce keşfettiği doğrudur.[5])
Dört ayrı Gauss dağılımı
Dört ayrı Gauss dağılımı

Gauss, Hannover'de yaptığı yüzey ölçümleri sırasında, ölçüm hatalarının istatistiksel dağılımını veren (ve daha önce astronomi araştırmalarında da kullandığı) normal dağılım fikrini kafasında iyice belirginleştirdi. (Bugün normal dağılıma Gauss dağılımı da denmektedir.) Ayrıca bu ölçümler Gauss'un diferansiyel geometriye de (eğriler ve yüzeylerle ilgilenen bir matematik dalı) ilgi duymasını sağladı. 1828'de bu matematik dalının önemli teoremlerinden biri olan theorema egregium'u kanıtladı.

Yaşlılığı ve ölümü

1831 yılında Gauss, fizik profesörü Wilhelm Weber'le beraber çalışmaya başladı. Bu beraberlik, manyetizma ve elektrik konularına pek çok yenilik getirecekti (kütle, uzunluk ve zamana bağlı yeni bir manyetizma birimi gibi). 1833'te Gauss ve Weber ilk elektromanyetik telgrafı icat ettiler, ve bu telgrafla gözlemevini fizik enstitüsüne bağladılar. Gauss, hala müdürü olduğu gözlemevinin bahçesine bir manyetik gözlemevi kurulması talimatını verdi, ve Weber'le beraber Dünya'nın çeşitli yerlerindeki manyetik alanı ölçmek amacıyla bir "manyetik kulüp" (Alm. magnetischer Verein) kurdu. Gauss'un bu sıralarda geliştirdiği, manyetik alanın yatay yoğunluğunu ölçmeye yarayan metod, 20. yüzyıl ortalarına kadar kullanılmaya devam etti. Gauss ayrıca, Dünya'nin manyetik alanının iç (çekirdek) ve dış (manyetosfer) kaynaklarını ayırmak için gereken matematiksel teoriyi de geliştirdi. Hayatının sonlarına doğru matematiksel yeteneklerinin köreldiğini hissedince edebiyatla ilgilenmeye başladı.

Gauss 23 Şubat 1855'te, 78 yaşındayken, yıllardır yaşadığı Göttingen'de hayata gözlerini yumdu ve bu şehirdeki Albanifriedhof 'a gömüldü. Cenazesinde damadı Heinrich Ewald ve yakın arkadaşı (aynı zamanda biyografisinin yazarı) Wolfgang Sartorius von Waltershausen birer konuşma yaptılar. Beyni araştırma için muhafaza edildi, ve bugün hala Göttingen Üniversitesi'nin tıp fakültesinde formalin içinde korunmaktadır.

Aile hayatı

Gauss ilk evliliğini 1805 yılında Johanna Osthoff ile yaptı. Bu evlilikten Joseph (1806-1873) adında bir oğlu ve Wilhelmine (1808-1846) adında bir kızı oldu. 1809'da, Louis adını verdikleri üçüncü çocuğun doğumu sırasında Johanna hayatını kaybetti, Louis de henüz bir yaşına gelmeden annesini takip etti. Gauss, bu ölümlerden dolayı girdiği depresyondan asla tam anlamıyla kurtulamadı. Louis'in ölümünden kısa süre sonra, 1810'da karısının arkadaşı Minna Waldeck ile evlendi. Bu evlilikten de üç çocuğu oldu: Eugen (1811-1896), Wilhelm (1813-1879) ve Therese (1816-1864). Minna 1831'de hastalıktan ölünce Gauss'a ölümüne kadar kızı Therese baktı. Eugen ve Wilhelm ABD'nin Missouri eyaletine yerleştiler.

wikipedi

Mesajı son düzenleyen Carambols ( 04-04-08 - 17:55 )
  Alıntı Yaparak Cevapla
Eski 11-11-07, 18:42   #2
smlhoca

Varsayılan C: gauss hayatı..


EmeĞİnİze SaĞlik
  Alıntı Yaparak Cevapla
Eski 21-11-07, 12:38   #3
forzags

Varsayılan C: gauss hayatı..


paylaşım için teşekkurler
  Alıntı Yaparak Cevapla
Eski 31-03-08, 15:24   #4
isareis1212

Varsayılan C: gauss hayatı..


iyi olmuş tşk
  Alıntı Yaparak Cevapla
Eski 04-04-08, 16:51   #5
lron_Maiden

Varsayılan C: gauss hayatı..

teşekkürler eline sağlık
  Alıntı Yaparak Cevapla
Cevapla

Bu konunun kısa yolunu aşağıdaki sitelere ekleyebilirsiniz

Konu Araçları

Gönderme Kuralları
Yeni konu açamazsınız
Cevap yazamazsınız
Dosya gönderemezsiniz
Mesajlarınızı düzenleyemezsiniz

BB code is Açık
Smiley Açık
[IMG] kodu Açık
HTML kodu Kapalı



5651 sayılı yasaya göre forumumuzdaki mesajlardan doğabilecek her türlü sorumluluk yazan kullanıcılara aittir. Şikayet Mailimiz. İçerik, Yer Sağlayıcı Bilgilerimiz. Reklam Mailimiz. Gizlilik Politikası


Reklamı Kapat

Reklamı Kapat